81. Catalytic One-Pot Osmylation of Cyclohexadienes: Stereochemical and Conformational Studies of the Resulting Polyols

by Théophile Tschamber^a)^{*}, Frédérique Backenstrass^a), Hans Fritz^b), and Jacques Streith^a)

^a) Ecole Nationale Supérieure de Chimie, Université de Haute-Alsace, 3, rue Alfred Werner, F-68093 Mulhouse Cédex ^b) Physikalische Abteilung, *Ciba-Geigy AG*, CH-4002 Basel

(8.1V.92)

Catalytic double osmylation is described for a series of cyclohexadienes in acetone/H,O in the presence of the co-oxidant N -methylmorpholine N -oxide (NMO). The formation of polyols occurred stereospecifically with cyclohexadienes **3,7,** and **lla,** leading thereby to tetrols **5a,** and **9a** and to alio-inositol(14a), respectively. To the contrary, **trans-cyclohexadiene-diol 15a** gave a mixture of the stereoisomeric inositols **18a** *(epi),* **19a** *(nro),* and **20a** *(chiro).* High-field NMR let to clearcut conformational analyses of the polyhydroxylated derivatives.

Introduction. – In a preliminary communication, we described the one-pot double catalytic osmylation of dihydropyridine **1** which led stereospecifically to the aminodideoxyaltrose derivative **2** [11. The stereospecific *'cisltranslcisltrans'* outcome of this multistep reaction - which led in good yield to *5* asymmetric centres ~ is most probably due to minimization of steric interactions during each osmylation step. Due to the strong anomeric effect, which is more pronounced in piperidinoses than in pyranoses, compound **2** occurred exclusively in the chair conformation [11.

In the meantime, *Sharpless, Park,* and *Moon Kim* reported a similar catalytic osmylation methodology with open-chain conjugated (E,E) -dienes, and found stereoselectivities which were strongly in favour of the *'cis/trans/cis'* stereoisomeric tetrols [2]. Besides these two preliminary studies [l] [2], osmylation of 1,3-dienes has received but little attention, despite its obvious utility in the synthesis of polyhydroxylated compounds, $KMnO_a$ being used more frequently than $OsO₄$, leading usually with poor stereoselectivity to a mixture of tetrols [3-91.

We describe herein catalytic single and double osmylation of cyclohexadienes **3, 7, lla,** and **15a** with N-methylmorpholine N-oxide (NMO) as the co-oxidant, the experimental conditions being similar to those used for the synthesis of aminodideoxyaltrose **2,** and to those described by *Sharpless* and coworkers *[2]* (see below).

Catalytic Osmylation **of** Cyclohexa-1,3-diene (3) and Cyclohexa-1,4-diene **(7).** - Catalytic osmylation of 3 in the presence of an excess of NMO (more than 2 equiv.) at room temperature in acetone/H₂O led exclusively to tetrol 5a which was characterised as its tetraacetate **5b** (overall yield 86%). The same procedure applied *to* cyclohexadiene **7** gave tetrol 9a and thence the corresponding tetraacetate 9b $(81\%$ overall yield). Since 5a and 9a are the less hindered tetrols, it is most likely that they were formed under steric control. Incomplete osmylation of **3** in the presence of 1 equiv. of NMO, followed by acetylation gave 4b (79%) and 5b *(5 YO).* Diene **7,** treated likewise, led to a mixture of **8b** (32%) and 9b (27%) . These results indicate that diol 8a is more reactive (less hindered) than diol 4a.

While *Pasternak* and *Friedli* could show that catalytic osmylation of enediol4a in the presence of an excess of AgC10, led stereospecifically to tetrol **5a** in good yield [3], *Zelinski et al.* found that hydroxylation of diene **3** with KMnO, gave 6a in poor yield only [4]. The stereochemical outcome of this latter reaction was explained by assuming a *'cis-* complexation' of both double bonds by KMnO, followed by an *'anti'-* hydrolysis of the so-formed 'manganic ester' *[S].* As to the double hydroxylation of diene **7** with

KMnO,, it gave a mixture **8a/9a,** both in poor yield *[6].* Eventually, *McCuslund et a/.* described the catalytic osmylation of **7** in the presence of AgClO, which led to **9a/10a,** the former being the major product [10].

It appears, therefore, that the $OsO₄/NMO$ hydroxylation is the method of choice, since it leads to higher yields; furthermore, it is stereospecific, at least with dienes **3** and **7.**

Catalytic Osmylation of Cyclohexa-3,5-diene-l,2-diols lla *(cis)* **and 15a** *(trans).* - Catalytic mono- and bis-osmylation of cyclohexadiene-diols **1 la** and **15a** in the presence of NMO led to conduritols and to cyclitols. Thus, osmylation of **lla** for 15 h in the presence of 2 equiv. of NMO followed by acetylation led to conduritol E tetraacetate $(12b; 48\%)$ and *allo*-inositol hexaacetate $(14b; 31\%)$, whereas conduritol D tetraacetate **(13b)** could not be isolated. This indicates that steric crowding in **12a** is such that the second osmylation step occurs with difficulty. According to *Nukujimu et ul.,* catalytic osmylation of **lla** in the presence of AgC10, gave mostly phenol (48%) and small amounts of conduritol E (4% **12b** after acetylation) [7]. Furthermore, when bis-acetate

11b was hydroxylated with $KMnO₄$ in neutral medium, these authors isolated 12b only (61 *Yo)* [8], whereas catalytic osmylation of lla in the presence of 1 equiv. of NMO led to a mixture 12b/13b after acetylation (see below). When 12b was hydroxylated with $KMnO₄$, allo-inositol was isolated as its acetate 14b (45%) [8].

Catalytic osmylation of lla in the presence of 1 equiv. only of NMO followed by acetylation gave $12b/13b$ (overall yield 88%), 12b being the major product; under these conditions, 11a was entirely consumed after 2 h and *allo*-inositol (14a) did not form.

From these two experiments, *i.e.* catalytic osmylation of **11a** in the presence of 1 or 2 equiv. of NMO, one concludes that conduritol D (13a) is transformed into allo-inositol $(14a)$ at a faster rate than its stereoisomer conduritol E $(12a)$. This is clearly due to a steric interaction between OsO_a and the OH functions which is more pronounced in 12a than in 13a, a conclusion which had also reached *Angyal* and Gilham [111. Furthermore, since 13a and 12a gave the same inositol $14a$, bis-osmylation of 11a is stereospecific overall.

Diol 15a, which was prepared according to *Platt* and Oesch's procedure [12], was osmylated in the presence of a 2-fold excess of NMO (more than 2 equiv.) for *5* d and the reaction mixture acetylated to give 18b $(epi)/19b$ (*neo*)/20b (*chiro*) in a 42:11:47 ratio (overall yield 60%). The same experimental conditions applied to diacetate 15b for 3 d led, after acetylation, to 16b/lSb/19b/20b in a 50:9: 13:28 ratio.

Mono-osmylation of 15a or of 15b in the presence of 1 equiv. of NMO, followed by peracetylation, led to 16b/17b/19b/20b in a 66:25:2:7 ratio (as determined by 'H-NMR).

These results indicate that conduritol F (17a) is more reactive (towards $OsO₄$) then its stereoisomer conduritol **C** (16a). This again is best explained by steric crowding (in the transition states) which is more severe in 16 than in 17. Nevertheless, it is rather surprising that the seemingly more crowded conduritol $C(16a)$ was formed at a faster rate than conduritol $F(17a)$.

Structural Analyses **of** the Polyols. -The above described conduritols and cyclitols all are known compounds. Their relative configurations were established decades ago, in most cases by applying low-field NMR techniques. We used 250- and 400-MHz 'H-NMR spectroscopy to analyze unequivocally their conformations.

Cyclohexene-diols and Diacetates 4 and **8.** Compounds **4** are asymmetric; a large coupling constant $(J(1,6ax) = 10.2 \text{ Hz})$ clearly demonstrates that diol 4a occurs essentially in its pseudo-chair conformation A'). **As** a consequence, all *CH* atoms of **4** appear with well differentiated chemical shifts (8 *m,* see Table *1).* Compounds **8** also belong to the C_1 point group; nevertheless a fast equilibrium between the two enantiomeric pseudochair conformations leads to a simplification of the 'H-NMR spectrum at room temperature with only **3** differentiated chemical shifts (see Table *1).*

Table 1. *Selected 'H-NMR Data of Diols* **4a** *and* **8a,** *and of Their Acetates* **4b** *and* **8b.** 250 **MHz,** 300 K. **S** in **ppm,** *J* in **Hz,** internal standard **TMS.**

	Solvent	$H - C(1)$	$H - C(2)$	$H - C(3)$	$H - C(4)$	$H - C(5)$	$H_{\rm av}$ –C(6)	$H_{eq} - C(6)$
4а	CD ₃ OD	3.73	4.04	5.69	5.81	(2.05^a) , (2.21^b)	1.82	1.68
$\mathbf b$	CDCl ₃	5.10	5.42	5.67	5.99	2.25°	1.95	1.78
8а	CD ₃ OD	3.86	3.86	2.24 ^d	5.53	5.53	2.24 ^d	
	CDCl ₂	5.18	5.18	$2.35d$)	5.62	5.62	$2.35d$)	

¹) The pseudo-chair conformation **A** is also corroborated by the $J(1,2)$, $J(2,3)$, and $J(2,4)$ coupling constants (see *Table 1*). For similar half-chair conformations, see [13-15].

Cyclohexane-tetrols and Tetraacetates **5** *and* 9. Tetrol 5a is C_2 -symmetric, so that only 3 peaks appear in the 13C-NMR spectrum at room temperature (and 4 peaks in the 'H-NMR), the interconversion between the chair conformations **B** and **C** being fast (see *Table 2*). According to the coupling constant $J(2,3)$, measured from the ¹³C-satellites of the H-C(2), H-C(3) signal, **B** is the major conformation (60%) at equilibrium. At -60° , both chair conformations **B** and **C** appear as well separated C_2 -symmetric entities, the **BjC** ratio being 56:44 for 5a, and 90:10 for 5b (see *Table* 2).

Tetrol9a and its tetraacetate 9b have *C,* symmetry, so that 3 peaks should appear in the 13 C-NMR spectrum for the ring C-atoms, and 4 peaks in the 1 H-NMR spectrum for the cyclohexane H-atoms; this is indeed observed at high field and at low temperature (-30°) , with $J(2ax,3ax) = J(5ax,6ax) = 12$ Hz (these are the only J values which can be determined) for 9b. At room temperature though, the fast conformational inversion between the 2 identical chair conformations **D** leads to 2 peaks in the I3C- and to 2 peaks in ¹H-NMR, the fast inverting molecule having statistical C_{2h} symmetry. Such a conformational analysis could not be achieved at 60 MHz $[10]$.

Conduritols E-F and Tetraacetates 12, 13, **16,** *and* 17. Structure and conformation of conduritols C, D, E, and F were already studied by *Abraham et al.* at high-field 'H-NMR [16]. *Vogel* and coworkers undertook a higher-resolution **'H-** and "C-NMR study of conduritols C, D, and F and confirmed *Abraham's* conformational analyses [171 [181. Our own highfield 'H- and, in part, "C-NMR investigations led to similar conclusions in terms of conformational analysis (see *Exper. Part).* Conduritol D (13a) undergoes a fast conformational equilibrium between the 2 enantiomeric half-chairs (3 peaks in 'H- and 3 in ¹³C-NMR at room temperature). Conduritol E (12a) is C_2 -symmetric and its ¹H-NMR shows 3 peaks both at -30° and at room temperature Conduritol F (17a) being asymmetric $(C₁$ point group) appears with 6 peaks in the 'H-NMR at room temperature.

Znositols and Hexaacetates 14 *(allo),* **18** *(epi),* 19 *(neo), and* 20 *(chiro).* allo-Inositol hexaacetate (14b) is asymmetric and leads to 6 peaks both in the H - and in the 13 C-NMR for the ring H- and C-atoms at low temperature (see *Table 3),* the absorption bands having been attributed *via* double-irradiation techniques. At -30° , $J(1,6) = 11$ Hz can be determined which demonstrates the *trans* -diaxial configuration of these 2 protons as indicated in **E** (the other Jvalues are smaller than *3* Hz). At 45", a fast equilibrium occurs between the two enantiomeric chair conformations as demonstrated by the simplified spectrum, the molecule having now a statistical *C,* symmetry (3 peaks in the 'H- and 3 in the ${}^{13}C$ -NMR).

epi- Lnositol hexaacetate (18b) having *C,* symmetry shows 4 peaks in the 'H- and in the %-NMR, as expected (see *Table 3).* Only one chair conformation is present, *i.e.* **F,** with 4 equatorial AcO groups $(J(1,6) = J(5,6) = 10.4 \text{ Hz})$.

1056

.
himica Acta – Vol. 75 (1992

1057

67.3 67.5

68.1 67.3

67.5 68.9

67.5 69.8

68.1 69.8

67.5
68.9

 $62.9 \text{ MHz}, \text{CDCl}_3, 27^{\text{o}} \\ 62.9 \text{ MHz}, \text{CDCl}_3, 27^{\text{o}}$

1Yb 250MH~, CDCI,, 27" 5.35 5.66 5.35 5.35 5.66 5.35 62.9 MHz, CDCI,, 27" 67.5 68.1 67.5 67.5 68.1 67.5 **20b** 250 MHz, CDCI?, 27" 5.32 5.40 5.40 5.32 5.43 5.43 62.9 MHz, CDCI,, 27" 68.9 69.8 69.8 68.9 67.3 67.3

5.35
5.43

5.66
5.43

5.35
5.32

5.35
5.40

5.66
5.40

5.35
5.32

") Can be inverted.

 $\frac{36}{20}$

 $\frac{a}{2}$ Can be inverted.

H- and ¹³C-NMR (see *Table 3*). The coupling constants $(J(1,6) = J(3,4) = 11.1$ Hz and $J(1,2) = J(2,3) = J(4,5) = J(5,6) = 2.5$ Hz) can be calculated by simulation *via* the LAO*neo*-Inositol hexaacetate (19b) is C_{2h} -symmetric so that only 2 peaks appear in the COON-I11 (PANIC) iteration program [19], showing thereby that conformation **G** is the predominant one for 19b.

chiro-Inositol hexaacetate 20b is C_2 -symmetric and leads to 3 peaks in the ¹Hand ¹³C-NMR (see *Table 3*), as expected. The coupling constants are calculated as above *via* the LAOCOON-I11 program [19] and permit to state that **H** is the dominant chair conformation, as expected $(J(2,3) = 2.5 \text{ Hz}; J(1,2) = J(3,4) = 1.4 \text{ Hz}; J(1,6)$ $= J(5,6) = J(4,5) = 10.3$ Hz).

Conclusion. - Double catalytic osmylation in the presence of *2* equiv. of NMO in acetone/H,O proved to be '*cis/trans/cis*'-stereospecific with (Z,Z) -cyclohexadienes **3**, **7**, and 11a, leading thereby to tetrol 5a, to tetrol 9a, and to *allo*-inositol $(14a)$, respectively. The C,-symmetric **truns-cyclohexadiene-diol** 15a gave a mixture of the three stereoisomeric inositols 18a-20a, via conduritol *C* (16a) and conduritol F (17a), the overall yield being moderate. The absence of stereoselection in this latter instance is reminiscent of the non-stereoselective osmylation as described recently by Campbell et *al.* for a 1 ,5-disubstituted cyclohexa-l,3-diene [20].

The support of the *Centre National de la Recherche Scientifique (URA-135)* is gratefully acknowledged. We also wish to thank the *Ministère de la Recherche et de la Technologie* for a research grant to one of us (F.B.) and Prof. *C. Le Drian* for a sample of (+)-conduritol F tetraacetate **(17b).**

Experimental Part

General. Flash chromatography (FC): silica gel *(Merck 60, 230–400 mesh).* TLC: Al roll silica gel *(Merck 60, 20*) *Fzs4).* M.p.: *Kojler* hot bench or *Biichi-SMP-20* apparatus; corrected. 1R Spectra (cm-I): *Perkin-Elmer 157-G.* 'Hand ¹³C-NMR Spectra: *Bruker AC-F-250*, and *AM-400* using double-irradiation techniques; tetramethylsilane (TMS; ¹H) and CDCI₃ or C₆D₆(δ (CDCI₃) = 77.0 or δ (C₆D₆) = 128.0 ppm rel. to TMS; ¹³C) as internal references; *S* in ppm and *J* in **Hz.** High-resolution (HR) MS were measured on a *MAT-311* spectrometer at the University of Rennes. Microanalyses were carried out by the 'Service Central de Microanalyses' of the CNRS, at Vernaison.

Reagents. The catalyst was prepared according to [21] from OsO, **(1** g) and **1** ml of 70% *t* -BuOOH in 200 ml of t-BuOH, a soh. which is *ca.* 0.02 mmol per ml. *Amberlyst A-26* (OH- form) was prepared starting from its chloride percursor *A-26* (Cl⁻ form; 10 g) by adding 1N aq. NaOH and letting the ion exchange occur for 1 h. The *Amberlyst A-26* (OH⁻ form) beads were then rinsed several times with H₂O and MeOH and could be kept for several weeks in the cold.

Cyclohexune-r-l,c-2, t-3, *t-4-tetrayl Tetraacetate* **(5b).** To a stirred soh. of cyclohexa-1,3-diene **(3;** 3.12 g, 38.9 mmol) in acetone/H₂O 9:1 (30 ml) were added NMO (16.02 g, 118 mmol, *ca.* 3 equiv.) and cat. OsO₄ soln. *(5* ml). After 2 h at r.t., the soln. was evaporated and the crude rcsidue taken up in Ac,O (25 ml) and pyridine (50 ml) and left to react at r.t. for 15 h. Some AcOEt was added and the soh. washed sequentially with 10% aq. $Na₂SO₃$ soln., 10% aq. NaHCO₃ soln., and brine. The combined org. soln. was dried (MgSO₄) and evaporated and the residue separated by column chromatography (AcOEt): **5b** (10.58 g, 86%). Colourless crystals. M.p. 163-164" (AcOEt). IR (KBr): 1740, 1375, 1365, 1240, 1220, 1200. ¹H-NMR: *Table 2*. ¹³C-NMR: *Table 2*. Anal. calc. for C,,H,,O, (316.30): C 53.16, H 6.37; found: C 53.2, **II** 6.3.

Cyclohexane-r-I,c-2,t-3, t-4-tetrol **(5a).** To a stirred soln. of **5b** (1.88 g, 5.94 mmol) in MeOH (20 ml) was added *Amberlyst A-26* (OH⁻). After 1 h at r.t., the suspension was filtered, the resin washed with hot MeOH, and the org. soh. evaporated: **5a** (867 mg, 100%). Colourless crystals. M.p. 21&215"(MeOH; [22]: 216"). IR (KBr): 3350 (br.), 2950, 2935, 2895, 1450, 1250. ¹H-NMR: *Table 2.* ¹³C-NMR: *Table 2*. Anal. calc. for C₆H₁₂O₄ (148.16): C 48.64, H 8.16; found: C 48.6, H 8.3.

cis-Cyclohex-3-ene-l,2-diyl Diacetate **(4b).** As described for **Sb,** with **3** (1.87 g. 23.4 mmol), acetone/H,O 9:l (15 ml), NMO (3.21 g, 23.7 mmol, 1 equiv.), cat. OsO, soln. *(5* ml), Ac20 (10 ml), and pyridine (20 ml). FC of thc crude (AcOEtjcyclohexane 3:7) gave **4b** as an oil (3.64 g, 79%) and **5b** (360 mg, 5%). **4b:** IR (KBr): 1735, 1365, 1245, 1225. ¹H-NMR: Table 2. ¹³C-NMR: Table 2. HR-MS: 138.0685 (C₈H₁₀O₂, [M - CH₃CO₂H]⁺, calc. 138.06807).

cis-Cyclohex-3-ene-1.2-diol **(4a). As** described for **Sa,** with **4b** (742 mg, 3.74 mmol), THF (6 ml), MeOH (15 ml), and Amberlyst A-26 (OH-): **4a** (426 mg, 100%). Oil. IR (KBr): 3395 (br.), 2920, 1075. 'H-NMR: Table *1.*

Cyclohexane- r-I, c-2, t-4, t-5-tetravl Tetraacetate **(9b).** As described for **Sb,** with cyclohexa-l,4-diene (7; 925 mg, 11.9 mmol), acetone/H20 9:l (14 ml), NMO (4.19 g, 31.0 mmol, 2.6 equiv.), cat. OsO, soln. (5 ml), Ac,O (6 ml)/pyridine (12 ml; 40" for 15 h): **9b** (3.05 g, 81 %). Colourless crystals. M.p. 170-171" (CH,Cl,/hexane; [23]: 170"). IR (KBr): 1540, 1525, 1380, 1365, 1245, 1235. 'H-NMR: Table 2. I3C-NMR: Table 2. Anal. calc. for $C_{14}H_{20}O_8$ (316.30): C 53.16, H 6.37; found: C 53.1, H 6.4.

Cyelohexane-r-l,c-2,t-4,t-S-tetrol(9a). As described for **Sa,** with **9b** (727 mg, 2.3 mmol), MeOH (10 ml), and Amberlyst A-26 (OH-): **9a** (339 mg, 100%). Colourless crystals. M.p. 246" (MeOH; [23]: 241"). IR (KBr): 3370, 3260, 2940, 1390, 1350, 1225. ¹H-NMR: Table 2. ¹³C-NMR: Table 2. Anal. calc. for C₆H₁₂O₄ (148.16): C 48.64, **H** 8.16; found: C 48.6, H 8.3.

cis-C~clohex-4-ene-I,2-diyl Diacetate **(8b).** As described for **Sb,** with 7 (905 mg, 11.3 mmol), acetone/H20 9:l (10 ml), NMO (1.54 g, 11.4 mmol, 1 equiv.), cat. OsO, soln. *(5* ml), Ac20 (6 ml), and pyridine (12 ml). FC (AcOEt/cyclohexane 3:7) gave **8b** (825 mg, **37%)** as an oil and **9b** (973 mg, 27%). **8b:** IR (KBr): 1740, 1365, 1250, 1220. ¹H-NMR: Table 1. HR-MS: 138.0685 (C₈H₁₀O₂ [M - CH₃CO₂H]⁺, calc. 138.06807).

cis-Cyclohex-4-ene-l.2-diol(8a). **As** described for **Sa,** with **8b** (685 mg, 3.45 mmol), THF (2 ml), MeOH *(5* ml), and Amberlyst A-26 (OH-): **8a** (371 mg, 94%), colourless crystals after FC (AcOEt) of the crude. M.p. 79" (crystal washed with Et₂O; [6] [24]: 74-78.5°). IR (KBr): 3260 (br.), 2890. ¹H-NMR: Table 1. Anal. calc. for C₆H₁₀O₂ (114.14):C63.13,H8.83;found:C63.0,H8.9.

Conduritol *E* Tetraucetate **(12b)** and allo-Inositol Hexaaceiate **(14b).** As described for **Sb,** with cis-cyclohexa-3,5-diene-1,2-diol **(lla;** 685 mg, 6.10 mmol), acetone/H,O 9:l (14 ml), NMO (1.74 g, 12.7 mmol, 2.1 equiv.), cat. OsO₄ soln. (5 ml; 15 h at r.t.), and Ac₂O (5 ml)/pyridine (10 ml; 40° for 15 h). FC (AcOEt/cyclohexane 4:6) of the crude gave **14b** (830 mg, 31 %) and **l2b** (920 mg, 48%), both as colourless crystals.

12b: M.p. 156" (AcOEt/hexane; [7]: 153"). IR (KBr): 1745 (br.), 1370, 1245, 1215. 'H-NMR (400 MHz, $|J(1,6) + J(4,5)| \approx 4$, $|J(1,2) + J(3,4)| \approx 3.5$, $J(2,3) \approx 10$, $J(5,6) \approx 10$. ¹H-NMR (400 MHz, CDCl₃, -30^o): 5.68; 5.41; 5.92; 2.10; 2.04. ¹³C-NMR (100.6 MHz, CDCl₃, 25°): 170.2 *(C*=O); 169.9 *(C*=O); 128.2 *(C(5)*, *C(6)*); 66.6 $(C(2), C(3))$; 66.1 $(C(1), C(4))$; 20.8 (Me); 20.6 (Me). Anal. calc. for C₁₄H₁₈O₈ (314.28): C 53.50, H 5.77; found: C 53.7, **H** 5.7. CDCl₃, 25°): 5.68 (H-C(1), H-C(4)); 5.44 (H-C(2), H-C(3)); 5.91 (H-C(5), H-C(6)); 2.08 (Ac); 2.02 (Ac);

14b: M.p. 141-143° (CH₂Cl₂/hexane; [25]: 144°). 1R (KBr): 1745 (br.), 1435, 1370, 1225. ¹H-NMR: Table 3. ¹³C-NMR: *Table 3.* Anal. calc. for C₁₈H₂₄O₁₂ (432.37): C 50.00, H 5.60; found: C 49.8, H 5.5.

Conduritol E (12a). As described for $5a$, with 12b (290 mg, 0.92 mmol), THF (2 ml), MeOH (5 ml), and Amberlyst A-26 (OH-): **12a** (126 mg, 94%). Colourless crystals. M.p. 183"(MeOH; [7]: 180'). IR (KBr): 3365 (br.), 1105, 1095. ¹H-NMR (400 MHz, CD₃OD, 25^o): 4.23 (H-C(1), H-C(4)); 3.90 (H-C(2), H-C(3)); 5.75 (H-C(5), H-C(6)). ¹³C-NMR (100.6 MHz, CD₃OD): 130.8 (C(5), C(6)); 71.2 (C(2), C(3)); 67.7 (C(1), C(4)). Anal. calc. for $C_6H_{10}O_4$ (146.16): C 49.31, H 6.90; found: C 49.4, H 7.1.

allo-Inositol(l4a). **As** described for **Sa,** with **14b** (334 mg, 0.77 mmol): **14a** (132 my, 95%). Colourless crystals. M.p. 310° (dec.; [25]: 320° (dec.)). IR (KBr): 3480-3180, 2920, 1440, 1420, 1110. Anal. calc. for C₆H₁₂O₆(180.16): C 40.00, H 6.71; found: C 39.9, H 6.8.

Conduritol *E* Tetraacetate **(12b)** and Conduritol *D* Tetraacetate **(13b). As** described for **Sb,** with **lla** (218 mg, 1.94 mmol), acetone/H,O 9:l (4 ml), NMO (269 mg, 1.99 mmol, 1 equiv.), cat. **Os04** (2 ml), AqO (3 ml)/pyridine (6 ml; 5 h at 40O). FC (AcOEt/cyclohexane 4:6) of the crude residue gave **12b** (343 mg, 56%; see above) and **13b** (195 mg, 32%), both as colourless crystals. **13b:** M.p. 107-108° (AcOEt/hexane; [7]: 102--104"). IR (KBr): 1745, 1730, 1365, 1230, 1215. ¹H-NMR (250 MHz, CDCI₃, 25^o): 5.58 $(m, H-C(1), H-C(4))$; 5.37 $(m, H-C(2), H-C(3))$; 5.90 *(m,* H-C(5), H-C(6)); 2.01 (Ac).

Conduritol C Tetraacetate **(16b),** epi-Inositol Hexaacetate **(18b),** neo-Inositol Hexaacetate **(19b),** and chiro-*Inositol Hexaucetate* **20b**. To a stirred soln. of diacetate **15b** (303 mg, 1.54 mmol, 2.15 equiv.) in acetone/H₂O 9:1 (8 ml) were added NMO (446 mg, 3.29 mmol) and cat. $OsO₄$ soln. (1.5 ml). After 24 h at r.t., the soln. was evaporated, the residue taken up in Ac₂O (3.5 ml) and pyridine (7 ml), and the resulting soln. heated overnight to 45°. Et₃N (5 ml) was added and the soln. kept for 24 h at 45°. After addition of toluene and MeOH, the soln. was evaporated and the crude residue separated into several fractions by column chromatography. Each fraction was partly resolved by FC (AcOEt/cyclohexane 4:6) whereby 16b, 18b, 19b, and 20b could be isolated.

16b: M.p. 93° (AcOEt/cyclohexane; [7]: 92°). IR (KBr): 1740, 1360, 1225. ¹H-NMR (C₆D₆, 250 MHz, 25°): (Ac); 1.63 (Ac). ¹³C-NMR (62.9 MHz, C₆D₆, 25°): 170.0 (CO); 169.6 (CO); 169.1 (CO); 128.4 (C(6)); 127.6 (C(5)); 71.2 *(C(3));* 70.3 (C(2)); 69.9 (C(4)); 68.2 (C(1)); 20.5 (Me); 20.3 (Me); 20.3 (Me); 20.2 (Me). 5.48 (H-C(1)); 5.90 (H-C(2)); 5.33 (H-C(3)); 5.96 (H-C(4)); 5.58 (H-C(5)); 5.40 (H-C(6)); 1.68 (Ac); 1.66

18b: M.p. 183--184" (CH2C12/hexane; [9]: 186"). 'H-NMR: *Table* 3. I3C-NMR: *Table* 3.

19b: M.p. 257-259" (MeOH; [9]: 250-252O). 'H-NMR: *Table* 3. I3C-NMR: *Table* 3.

20b: M.p. 113-1 14" (Et,O/hexane; [26]: **I1** 1-1 12'). 'H-NMR: *Table* 3. "C-NMR: *Table* 3.

Conduritol C Tetraacetate (16b) *and Conduritol F Tetraacetate* (17b). As described for 5b, with *trans-cyclo***hexa-3,5-diene-1,2-diol(lSa;** 200 mg, 1.8 mmol), acetone/H,O 9:1 *(5* mi), NMO (241 mg, 1.8 mmol, 1 equiv.), cat. OsO₄ soln. (2 ml; 20 h at r.t.), Ac₂O (2.5 ml)/Et₃N (5 ml; 15 h at 40°). ¹H-NMR (250 MHz): **16b/17b** *(ca.* 70 %) 3:1, 18b/19b/20b (\leq 20%). Compound 17b could not be isolated in pure form, but its ¹H-NMR was identical with the one of a pure sample of 17b as synthetized by *Le Drian et al.* [18]. ¹H-NMR (non-purified 17b; 250 MHz, C_6D_6): 5.90 *(dd, J* = 11.0, 7.5, H-C(3)); 5.65 *(m,* H-C(1)); 5.55 *(ddd, J* = 7.5, 1.7, 1.2, H-C(4)); 5.39 *(m,* H-C(5), $H-C(6)$; 5.23 *(dd, J* = 11.0, 3.9, H-C(2)); 1.71, 1.69, 1.63, 1.56 (4s, AcO).

REFERENCES

- [1] F. Backenstrass, J. Streith, Th. Tschamber, *Tetrahedron Lett.* **1990**, 31, 2139.
- [2] Ch. Y. Park, B. Moon Kim, K. B. Sharpless, *Tetrahedron Lett.* **1991,** 32, 1003.
- [3] Th. Posternak, H. Friedli, *Helv. Chim. Acta* 1953, 36, 251.
- [4] N. D. Zelinski, Ya. 1. Denisenko, M. **S.** Eventova, *C. R. Acad. Sci. URSS* 1935, *I,* **313.**
- *[5]* H. *Z.* Sable, K. A. Powel, H. Katchian, C. B. Niewoehner, S. B. Kadlec, *Tetrahedron* 1970,26, 1509.
- *[6]* K. A. Powell, A. **L.** Hughes, H. Katchian, J. F. Jerauld, H. **Z.** Sable, *Tetrahedron* 1972,28, 2019.
- [7] M. Nakajima, I. Tomida, **S.** Takei, *Chem. Rer.* 1957,90, 246.
- *[8]* M. Nakajima, **I.** Tomida, **S.** Takei, *Chem. Ber.* 1959, 92, 163.
- [9] M. Nakajima, I. Tomida, N. Kurihdra, S. Takei, *Chem. Ber.* 1959, 92, 173.
- [lo] G. E. McCasland, **S.** Furuta, L.F. Johnson, J.N. Shoolery, *J. Org. Chem.* 1963,28, 894.
- [I 11 **S.** J. Angyal, P.T. Gilham, *J. Chem.* Soc. 1958, 375.
- [12] K. *L.* Pldtt, **F.** Oesch, *Synthesis* 1977,449.
- [I31 H. Gunther, G. Jikeli, *Chem. Rev.* 1977, 77, 599.
- [I41 M. Barfield, R. J. Spear, **S.** Sternhcll, *Chem. Rev.* 1976, *76,* 593.
- [I51 A. Defoin, H. Fritz, G. Geffroy, J. Streith, *Helu. Chim. Acta* 1988, *71,* 1642.
- [16] R. J. Abraham, H. Gottschalck, H. Paulsen, W.A. Thomas, *J. Chem.* Soc. 1965,6268.
- [17] C. Le Drian, E. Vieira, P. Vogel, *Helu. Chim. Acta* 1989, 72, 338.
- [I81 C. Le Drian, J.-P. Vionnet, P. Vogel, *Helu. Chim. Acta* 1990, 73, 161.
- [I91 LAOCOON-I11 program provided by *Bruker-Spectrospin.*
- [20] M.M. Campbell, M.F. Mahon, M. Sanisbury, P.A. Searle, *Tetrahedron Lett.* 1991,32,951.
- [21] K. Akashi, R. E. Palermo, K. B. Sharpless, *J. Org. Chem.* 1978,43,2063.
- *[22]* G. E. McCashland, *Adu. Carbohydr. Chem.* 1965,20, 10.
- [23] E. 0. N. Lippmann, *Ber. Dtsch. Chem. Ges.* 1901,34, 11 59.
- [24] G. R. Krow, R. Carmosin, A. Maucuso, *Org. Prep. Proced. Lut.* **1977,** 9, 285 *(CA* : **1978**, 88, 37305w).
- [25] **S.** J. Angyal, L. Andersen, *Adu. Carhohydr. Chem.* 1959,14, 135.
- [26] H. G. Fletcher, Jr., G. R. Frindlay, *J. Am. Chem. Soc.* 1948, 70,4050.