81. Catalytic One-Pot Osmylation of Cyclohexadienes: Stereochemical and Conformational Studies of the Resulting Polyols

by Théophile Tschamber^a) *, Frédérique Backenstrass^a), Hans Fritz^b), and Jacques Streith^a)

 ^a) Ecole Nationale Supérieure de Chimie, Université de Haute-Alsace, 3, rue Alfred Werner, F-68093 Mulhouse Cédex
^b) Physikalische Abteilung, *Ciba-Geigy AG*, CH-4002 Basel

(8.IV.92)

Catalytic double osmylation is described for a series of cyclohexadienes in $acetone/H_2O$ in the presence of the co-oxidant *N*-methylmorpholine *N*-oxide (NMO). The formation of polyols occurred stereospecifically with cyclohexadienes 3, 7, and 11a, leading thereby to tetrols 5a, and 9a and to *allo*-inositol (14a), respectively. To the contrary, *trans*-cyclohexadiene-diol 15a gave a mixture of the stereoisomeric inositols 18a (*epi*), 19a (*neo*), and 20a (*chiro*). High-field NMR let to clearcut conformational analyses of the polyhydroxylated derivatives.

Introduction. – In a preliminary communication, we described the one-pot double catalytic osmylation of dihydropyridine **1** which led stereospecifically to the aminodideoxyaltrose derivative **2** [1]. The stereospecific '*cis/trans/cis/trans*' outcome of this multistep reaction – which led in good yield to 5 asymmetric centres – is most probably due to minimization of steric interactions during each osmylation step. Due to the strong anomeric effect, which is more pronounced in piperidinoses than in pyranoses, compound **2** occurred exclusively in the chair conformation [1].

In the meantime, *Sharpless, Park*, and *Moon Kim* reported a similar catalytic osmylation methodology with open-chain conjugated (E,E)-dienes, and found stereoselectivities which were strongly in favour of the '*cis/trans/cis*' stereoisomeric tetrols [2]. Besides these two preliminary studies [1] [2], osmylation of 1,3-dienes has received but little attention, despite its obvious utility in the synthesis of polyhydroxylated compounds, KMnO₄ being used more frequently than OsO₄, leading usually with poor stereoselectivity to a mixture of tetrols [3–9].

We describe herein catalytic single and double osmylation of cyclohexadienes 3, 7, 11a, and 15a with *N*-methylmorpholine *N*-oxide (NMO) as the co-oxidant, the experi-

mental conditions being similar to those used for the synthesis of aminodideoxyaltrose **2**, and to those described by *Sharpless* and coworkers [2] (see below).

Catalytic Osmylation of Cyclohexa-1,3-diene (3) and Cyclohexa-1,4-diene (7). – Catalytic osmylation of 3 in the presence of an excess of NMO (more than 2 equiv.) at room temperature in acetone/ H_2O led exclusively to tetrol 5a which was characterised as its tetraacetate 5b (overall yield 86%). The same procedure applied to cyclohexadiene 7 gave tetrol 9a and thence the corresponding tetraacetate 9b (81% overall yield). Since 5a and 9a are the less hindered tetrols, it is most likely that they were formed under steric control. Incomplete osmylation of 3 in the presence of 1 equiv. of NMO, followed by acetylation gave 4b (79%) and 5b (5%). Diene 7, treated likewise, led to a mixture of 8b (32%) and 9b (27%). These results indicate that diol 8a is more reactive (less hindered) than diol 4a.

While *Pasternak* and *Friedli* could show that catalytic osmylation of enediol **4a** in the presence of an excess of AgClO₃ led stereospecifically to tetrol **5a** in good yield [3], *Zelinski et al.* found that hydroxylation of diene **3** with KMnO₄ gave **6a** in poor yield only [4]. The stereochemical outcome of this latter reaction was explained by assuming a *cis*-complexation' of both double bonds by KMnO₄ followed by an *'anti*'-hydrolysis of the so-formed 'manganic ester' [5]. As to the double hydroxylation of diene **7** with

 $KMnO_4$, it gave a mixture **8a/9a**, both in poor yield [6]. Eventually, *McCasland et al.* described the catalytic osmylation of 7 in the presence of AgClO₃ which led to **9a/10a**, the former being the major product [10].

It appears, therefore, that the OsO_4/NMO hydroxylation is the method of choice, since it leads to higher yields; furthermore, it is stereospecific, at least with dienes 3 and 7.

Catalytic Osmylation of Cyclohexa-3,5-diene-1,2-diols 11a (*cis*) and 15a (*trans*). – Catalytic mono- and bis-osmylation of cyclohexadiene-diols 11a and 15a in the presence of NMO led to conduritols and to cyclitols. Thus, osmylation of 11a for 15 h in the presence of 2 equiv. of NMO followed by acetylation led to conduritol E tetraacetate (12b; 48%) and *allo*-inositol hexaacetate (14b; 31%), whereas conduritol D tetraacetate (13b) could not be isolated. This indicates that steric crowding in 12a is such that the second osmylation step occurs with difficulty. According to *Nakajima et al.*, catalytic osmylation of 11a in the presence of AgClO₃ gave mostly phenol (48%) and small amounts of conduritol E (4% 12b after acetylation) [7]. Furthermore, when bis-acetate

11b was hydroxylated with $KMnO_4$ in neutral medium, these authors isolated 12b only (61%) [8], whereas catalytic osmylation of 11a in the presence of 1 equiv. of NMO led to a mixture 12b/13b after acetylation (see below). When 12b was hydroxylated with $KMnO_4$, *allo*-inositol was isolated as its acetate 14b (45%) [8].

Catalytic osmylation of 11a in the presence of 1 equiv. only of NMO followed by acetylation gave 12b/13b (overall yield 88%), 12b being the major product; under these conditions, 11a was entirely consumed after 2 h and *allo*-inositol (14a) did not form.

From these two experiments, *i.e.* catalytic osmylation of **11a** in the presence of 1 or 2 equiv. of NMO, one concludes that conduritol D (**13a**) is transformed into *allo*-inositol (**14a**) at a faster rate than its stereoisomer conduritol E (**12a**). This is clearly due to a steric interaction between OsO_4 and the OH functions which is more pronounced in **12a** than in **13a**, a conclusion which had also reached *Angyal* and *Gilham* [11]. Furthermore, since **13a** and **12a** gave the same inositol **14a**, bis-osmylation of **11a** is stereospecific overall.

Diol 15a, which was prepared according to *Platt* and *Oesch*'s procedure [12], was osmylated in the presence of a 2-fold excess of NMO (more than 2 equiv.) for 5 d and the reaction mixture acetylated to give 18b (*epi*)/19b (*neo*)/20b (*chiro*) in a 42:11:47 ratio (overall yield 60%). The same experimental conditions applied to diacetate 15b for 3 d led, after acetylation, to 16b/18b/19b/20b in a 50:9:13:28 ratio.

Mono-osmylation of **15a** or of **15b** in the presence of 1 equiv. of NMO, followed by peracetylation, led to **16b/17b/19b/20b** in a 66:25:2:7 ratio (as determined by ¹H-NMR).

These results indicate that conductor F(17a) is more reactive (towards OsO_4) then its stereoisomer conductor C(16a). This again is best explained by steric crowding (in the transition states) which is more severe in 16 than in 17. Nevertheless, it is rather surprising that the seemingly more crowded conductor C(16a) was formed at a faster rate than conductor F(17a).

Structural Analyses of the Polyols. – The above described conduritols and cyclitols all are known compounds. Their relative configurations were established decades ago, in most cases by applying low-field NMR techniques. We used 250- and 400-MHz ¹H-NMR spectroscopy to analyze unequivocally their conformations.

Cyclohexene-diols and Diacetates 4 and 8. Compounds 4 are asymmetric; a large coupling constant (J(1,6ax) = 10.2 Hz) clearly demonstrates that diol 4a occurs essentially in its pseudo-chair conformation A¹). As a consequence, all CH atoms of 4 appear with well differentiated chemical shifts (8 m, see Table 1). Compounds 8 also belong to the C_1 point group; nevertheless a fast equilibrium between the two enantiomeric pseudo-chair conformations leads to a simplification of the ¹H-NMR spectrum at room temperature with only 3 differentiated chemical shifts (see Table 1).

Table 1. Selected ¹H-NMR Data of Diols **4a** and **8a**, and of Their Acetates **4b** and **8b**. 250 MHz, 300 K. δ in ppm, J in Hz, internal standard TMS.

	Solvent	H–C(1)	H-C(2)	H-C(3)	H-C(4)	H-C(5)	H _{ax} -C(6)	H _{eq} -C(6)
4a	CD ₃ OD	3.73	4.04	5.69	5.81	2.05 ^a), 2.21 ^b)	1.82	1.68
b	CDCl ₃	5.10	5.42	5.67	5.99	2.25 ^c)	1.95	1.78
8a	CD ₁ OD	3.86	3.86	2.24 ^d)	5.53	5.53	2.24	^d)
b	CDCl ₃	5.18	5.18	2.35 ^d)	5.62	5.62	2.35	^d)

¹) The pseudo-chair conformation A is also corroborated by the J(1,2), J(2,3), and J(2,4) coupling constants (see *Table 1*). For similar half-chair conformations, see [13–15].

Tab. I (cont.)	Tab.	1	(cont.)
----------------	------	---	---------

		J(1,2)	J(1,6a)	J(1,6e)	J(2,3)	J(2,4)	J(2,6e)	J(3,4)	$J(3,5)^{d})$	$J(4,5)^{\rm d})$	J(4,6e)	J(5a,5e)	$J(5,6a)^{d})$	$J(5,6e)^{e})$	J(6a,6e)
4b	CDCl ₃	3.9	10.2	3.3	4.3	1.0	1.0	9.9	2.1	3.6	0.3	18.2	7.0	5.5	12.6
a)	H _{ax} -C	(5).													
b)	H _{eo} -C	(5).													
°)	AB pat	ttern f	or H _{ea} -	-C(5) a	nd H _a	x - C(5)).								
d)	Mean	values	for H _e	-C(3)	$/H_{ea}-$	 C(6) a	nd for	H _{ax} –C	$C(3)/H_{ax}$	-C(6).					
e)	These	data r	epresen	t mean	value	s of co	upling	consta	ants with	h H _{ax} –C	C(5) and	Heo-C	(5).		

Cyclohexane-tetrols and Tetraacetates 5 and 9. Tetrol 5a is C_2 -symmetric, so that only 3 peaks appear in the ¹³C-NMR spectrum at room temperature (and 4 peaks in the ¹H-NMR), the interconversion between the chair conformations **B** and **C** being fast (see *Table 2*). According to the coupling constant J(2,3), measured from the ¹³C-satellites of the H-C(2), H-C(3) signal, **B** is the major conformation (60%) at equilibrium. At -60° , both chair conformations **B** and **C** appear as well separated C_2 -symmetric entities, the **B/C** ratio being 56:44 for 5a, and 90:10 for 5b (see *Table 2*).

Tetrol **9a** and its tetraacetate **9b** have C_i symmetry, so that 3 peaks should appear in the ¹³C-NMR spectrum for the ring *C*-atoms, and 4 peaks in the ¹H-NMR spectrum for the cyclohexane H-atoms; this is indeed observed at high field and at low temperature (-30°) , with J(2ax,3ax) = J(5ax,6ax) = 12 Hz (these are the only *J* values which can be determined) for **9b**. At room temperature though, the fast conformational inversion between the 2 identical chair conformations **D** leads to 2 peaks in the ¹³C- and to 2 peaks in ¹H-NMR, the fast inverting molecule having statistical C_{2h} symmetry. Such a conformational analysis could not be achieved at 60 MHz [10].

Conduritols E-F and Tetraacetates 12, 13, 16, and 17. Structure and conformation of conduritols C, D, E, and F were already studied by Abraham et al. at high-field ¹H-NMR [16]. Vogel and coworkers undertook a higher-resolution ¹H- and ¹³C-NMR study of conduritols C, D, and F and confirmed Abraham's conformational analyses [17] [18]. Our own highfield ¹H- and, in part, ¹³C-NMR investigations led to similar conclusions in terms of conformational analysis (see Exper. Part). Conduritol D (13a) undergoes a fast conformational equilibrium between the 2 enantiomeric half-chairs (3 peaks in ¹H- and 3 in ¹³C-NMR at room temperature). Conduritol E (12a) is C₂-symmetric and its ¹H-NMR shows 3 peaks both at -30° and at room temperature Conduritol F (17a) being asymmetric (C_1 point group) appears with 6 peaks in the ¹H-NMR at room temperature.

Inositols and Hexaacetates 14 (allo), 18 (epi), 19 (neo), and 20 (chiro). allo-Inositol hexaacetate (14b) is asymmetric and leads to 6 peaks both in the ¹H- and in the ¹³C-NMR for the ring H- and C-atoms at low temperature (see *Table 3*), the absorption bands having been attributed via double-irradiation techniques. At -30° , J(1,6) = 11 Hz can be determined which demonstrates the trans-diaxial configuration of these 2 protons as indicated in E (the other J values are smaller than 3 Hz). At 45°, a fast equilibrium occurs between the two enantiomeric chair conformations as demonstrated by the simplified spectrum, the molecule having now a statistical C_s symmetry (3 peaks in the ¹H- and 3 in the ¹³C-NMR).

epi-Inositol hexaacetate (18b) having C_s symmetry shows 4 peaks in the ¹H- and in the ¹³C-NMR, as expected (see *Table 3*). Only one chair conformation is present, *i.e.* **F**, with 4 equatorial AcO groups (J(1,6) = J(5,6) = 10.4 Hz).

1056

Tabl	le 2. Selected ¹ H-NMR (400 h	AHz) and ¹³	C-NMR (10	00.6 MHz) <i>i</i>	Data of Teth CDCl ₃ (δ (C	rols 5a and $CDCl_3) = 7$	9a and of 77 ppm; ¹³	Their Tetraac ⁽ C) ^a).	etates 5b and	1 9b .ðin J	ppm, inte	rnal stand	ard TMS	¹ H) and
	Solvent, temp.	H-C(1)	H-C(2)	H-C(3)	H-C(4)	H-C(5	2) I	H-C(6)	C(1)	C(2)	C(3)	C(4)	C(5)	C(6)
5a	CD ₃ OD, 25°	3.93	3.73	3.73	3.93	1.76, 1.	.63	1.63, 1.76	70.23	73.29	73.29	70.23	26.59	26.59
	CD ₃ OD,60° B	3.98	3.64	3.64	3.98	1.82, 1.	.58 1	1.58, 1.82	71.22	72.01	72.01	71.22	26.22	26.22
	C	3.82	3.84	3.84	3.82	1.70, 1.	.58 1	1.58, 1.70	68.30	74.12	74.12	68.30	27.00	27.00
5b	CDCl ₃ , –25°	5.32	5.13	5.13	5.32	1.86, 1.	.71 1	1.71, 1.86	68.96	69.21	69.21	68.96	23.29	23.29
	CDCl ₃ , -60° B	5.34	5.03	5.03	5.34	ca. 1.7:	5 6	ca. 1.75	69.16	69.59	69.59	69.16	23.39	23.39
	C	4.97	5.19	5.19	4.97	(q	Ľ	(68.54	68.62	68.62	68.54	23.54	23.54
9a	D ₂ O, 25°	4.00	4.00	1.87	4.00	4.00	-	1.87	70.30	70.30	34.88	70.30	70.30	34.89
9 6	CDCl ₃ , 25°	5.30	5.30	2.05	5.30	5.30	.,	2.05	67.85	67.85	29.06	67.85	67.85	29.06
	CDCl ₃ , -30°	5.44	5.08, 1.95	2.10	5.44	5.08, 1.	.95 2	2.10	67.93	67.07	28.58	67.93	67.07	28.58
а (Assignment of the ¹ H- and ¹	³ C-NMR si	gnals by sel	lective deco	upling expe	sriments.								
(q	Not determined.													
Tab	ole 3. Selected ¹ H- and ¹³ C-N.	MR Data oj	f Inositol Ha	exaacetates	14b, 18b, 1	19b, and 20	b . <i>ð</i> in ppi	m, internal sta	undard TMS	s (¹ H) and	I CDCl ₃ ((ð (CDCl ₃	idd 77 = (n; ¹³ C).
	Frequency, solvent, tem	p. H-C(1	l) H–C(2)	H-C(3)	H-C(4)	H–C(5)	H-C(6)	Frequency.	solvent, ter	np. C(1) C(2)	C(3) C	(4) C(5)	C(6)
14b	400 MHz, CDCl ₃ , -30°	5.28 ^a)	5.63	5.24	5.29 ^a)	5.42	5.46	100.6 MHz	, CDCl ₃ , –	30° 66.5	58 68.46	65.22 6	7.59 67.2	2 66.09
	400 MHz, CDCl ₃ , 45°	5.32	5.45	5.45	5.32	5.47 5	5.47	100.6 MHz	, CDCl ₃ , 45	。 67.7	72 67.50	67.50 6	7.72 67.3	4 67.34
18b	250 MHz, C ₆ D ₆ , 27°	5.02	5.82	4.66	5.82	5.02 (6.04	62.9 MHz,	CDCl ₃ , 27°	68.9	9.89 (67.4 6	3.6 68.9	62.9

HELVETICA CHIMICA ACTA – Vol. 75 (1992)

1057

67.5 67.3

68.1 67.3

67.5 68.9

67.5 69.8

68.1 69.8

67.5 68.9

62.9 MHz, CDCl₃, 27° 62.9 MHz, CDCl₃, 27°

5.35 5.43

5.66 5.43

5.35 5.32

5.35 5.40

5.66 5.40

5.35 5.32

250 MHz, CDCl₃, 27° 250 MHz, CDCl₃, 27°

19b 20b ^a) Can be inverted.

neo-Inositol hexaacetate (19b) is C_{2h} -symmetric so that only 2 peaks appear in the ¹H- and ¹³C-NMR (see *Table 3*). The coupling constants (J(1,6) = J(3,4) = 11.1 Hz and J(1,2) = J(2,3) = J(4,5) = J(5,6) = 2.5 Hz) can be calculated by simulation *via* the LAO-COON-III (PANIC) iteration program [19], showing thereby that conformation **G** is the predominant one for **19b**.

chiro-Inositol hexaacetate **20b** is C_2 -symmetric and leads to 3 peaks in the ¹Hand ¹³C-NMR (see *Table 3*), as expected. The coupling constants are calculated as above *via* the LAOCOON-III program [19] and permit to state that **H** is the dominant chair conformation, as expected (J(2,3) = 2.5 Hz; J(1,2) = J(3,4) = 1.4 Hz; J(1,6) = J(5,6) = J(4,5) = 10.3 Hz.

Conclusion. – Double catalytic osmylation in the presence of 2 equiv. of NMO in acetone/H₂O proved to be '*cis/trans/cis*'-stereospecific with (Z,Z)-cyclohexadienes 3, 7, and 11a, leading thereby to tetrol 5a, to tetrol 9a, and to *allo*-inositol (14a), respectively. The C_2 -symmetric *trans*-cyclohexadiene-diol 15a gave a mixture of the three stereoisomeric inositols 18a-20a, via conduritol C (16a) and conduritol F (17a), the overall yield being moderate. The absence of stereoselection in this latter instance is reminiscent of the non-stereoselective osmylation as described recently by *Campbell et al.* for a 1,5-disubstituted cyclohexa-1,3-diene [20].

The support of the Centre National de la Recherche Scientifique (URA-135) is gratefully acknowledged. We also wish to thank the Ministère de la Recherche et de la Technologie for a research grant to one of us (F.B.) and Prof. C. Le Drian for a sample of (+)-conduritol F tetraacetate (17b).

Experimental Part

General. Flash chromatography (FC): silica gel (Merck 60, 230–400 mesh). TLC: Al roll silica gel (Merck 60, F_{254}). M.p.: Kofler hot bench or Büchi-SMP-20 apparatus; corrected. IR Spectra (cm⁻¹): Perkin-Elmer 157-G. ¹H- and ¹³C-NMR Spectra: Bruker AC-F-250, and AM-400 using double-irradiation techniques; tetramethylsilane (TMS; ¹H) and CDCl₃ or C₆D₆ (δ (CDCl₃) = 77.0 or δ (C₆D₆) = 128.0 ppm rel. to TMS; ¹³C) as internal references; δ in ppm and J in Hz. High-resolution (HR) MS were measured on a MAT-311 spectrometer at the University of Rennes. Microanalyses were carried out by the 'Service Central de Microanalyses' of the CNRS, at Vernaison.

Reagents. The catalyst was prepared according to [21] from OsO_4 (1 g) and 1 ml of 70% t-BuOOH in 200 ml of t-BuOH, a soln. which is *ca.* 0.02 mmol per ml. *Amberlyst A-26* (OH⁻ form) was prepared starting from its chloride percursor A-26 (Cl⁻ form; 10 g) by adding 1 N aq. NaOH and letting the ion exchange occur for 1 h. The *Amberlyst A-26* (OH⁻ form) beads were then rinsed several times with H₂O and MeOH and could be kept for several weeks in the cold.

Cyclohexane-r-1,c-2,t-3,t-4-tetrayl Tetraacetate (**5b**). To a stirred soln. of cyclohexa-1,3-diene (3; 3.12 g, 38.9 mmol) in acetone/H₂O 9:1 (30 ml) were added NMO (16.02 g, 118 mmol, *ca.* 3 equiv.) and cat. OsO₄ soln. (5 ml). After 2 h at r.t., the soln. was evaporated and the crude residue taken up in Ac₂O (25 ml) and pyridine (50 ml) and left to react at r.t. for 15 h. Some AcOEt was added and the soln. washed sequentially with 10% aq. Na₂SO₃ soln., 10% aq. NaHCO₃ soln., and brine. The combined org. soln. was dried (MgSO₄) and evaporated and the residue separated by column chromatography (AcOEt): **5b** (10.58 g, 86%). Colourless crystals. M.p. 163–164° (AcOEt). IR (KBr): 1740, 1375, 1365, 1240, 1220, 1200. ¹H-NMR: *Table 2*. ¹³C-NMR: *Table 2*. Anal. calc. for C₁₄H₂₀O₈ (316.30): C 53.16, H 6.37; found: C 53.2, H 6.3.

Cyclohexane-r-1,c-2,t-3,t-4-tetrol (**5a**). To a stirred soln. of **5b** (1.88 g, 5.94 mmol) in MeOH (20 ml) was added *Amberlyst A-26* (OH⁻). After 1 h at r.t., the suspension was filtered, the resin washed with hot MeOH, and the org. soln. evaporated: **5a** (867 mg, 100%). Colourless crystals. M.p. 214–215° (MeOH; [22]: 216°). IR (KBr): 3350 (br.), 2950, 2935, 2895, 1450, 1250. ¹H-NMR: *Table 2*. ¹³C-NMR: *Table 2*. Anal. calc. for C₆H₁₂O₄ (148.16): C 48.64, H 8.16; found: C 48.6, H 8.3.

cis-*Cyclohex-3-ene-1,2-diyl Diacetate* (**4b**). As described for **5b**, with **3** (1.87 g, 23.4 mmol), acetone/H₂O 9:1 (15 ml), NMO (3.21 g, 23.7 mmol, 1 equiv.), cat. OsO₄ soln. (5 ml), Ac₂O (10 ml), and pyridine (20 ml). FC of the crude (AcOEt/cyclohexane 3:7) gave **4b** as an oil (3.64 g, 79%) and **5b** (360 mg, 5%). **4b**: IR (KBr): 1735, 1365, 1245, 1225. ¹H-NMR: *Table 2.* ¹³C-NMR: *Table 2.* HR-MS: 138.0685 ($C_8H_{10}O_2$, [$M - CH_3CO_2H$]⁺, calc. 138.06807).

cis-Cyclohex-3-ene-1,2-diol (4a). As described for 5a, with 4b (742 mg, 3.74 mmol), THF (6 ml), MeOH (15 ml), and Amberlyst A-26 (OH⁻): 4a (426 mg, 100%). Oil. IR (KBr): 3395 (br.), 2920, 1075. ¹H-NMR: Table 1.

Cyclohexane-r-1, c-2, t-4, t-5-*tetrayl Tetraacetate* (9b). As described for 5b, with cyclohexa-1,4-diene (7; 925 mg, 11.9 mmol), acetone/H₂O 9:1 (14 ml), NMO (4.19 g, 31.0 mmol, 2.6 equiv.), cat. OsO₄ soln. (5 ml), Ac₂O (6 ml)/pyridine (12 ml; 40° for 15 h): 9b (3.05 g, 81%). Colourless crystals. M.p. 170–171° (CH₂Cl₂/hexane; [23]: 170°). IR (KBr): 1540, 1525, 1380, 1365, 1245, 1235. ¹H-NMR: *Table 2*. ¹³C-NMR: *Table 2*. Anal. calc. for C₁₄H₂₀O₈ (316.30): C 53.16, H 6.37; found: C 53.1, H 6.4.

Cyclohexane-**r**-*1*, **c**-2, **t**-4, **t**-5-*tetrol* (**9a**). As described for **5a**, with **9b** (727 mg, 2.3 mmol), MeOH (10 ml), and *Amberlyst A*-26 (OH⁻⁻): **9a** (339 mg, 100%). Colourless crystals. M.p. 246° (MeOH; [23]: 241°). IR (KBr): 3370, 3260, 2940, 1390, 1350, 1225. ¹H-NMR: *Table 2*. ¹³C-NMR: *Table 2*. Anal. calc. for $C_6H_{12}O_4$ (148.16): C 48.64, H 8.16; found: C 48.6, H 8.3.

cis-*Cyclohex-4-ene-1,2-diyl Diacetate* (**8b**). As described for **5b**, with **7** (905 mg, 11.3 mmol), acetone/H₂O 9:1 (10 ml), NMO (1.54 g, 11.4 mmol, 1 equiv.), cat. OsO₄ soln. (5 ml), Ac₂O (6 ml), and pyridine (12 ml). FC (AcOEt/cyclohexane 3:7) gave **8b** (825 mg, 37%) as an oil and **9b** (973 mg, 27%). **8b**: IR (KBr): 1740, 1365, 1250, 1220. ¹H-NMR: *Table 1*. HR-MS: 138.0685 ($C_8H_{10}O_2 [M - CH_3CO_2H]^+$, calc. 138.06807).

cis-Cyclohex-4-ene-1,2-diol (8a). As described for 5a, with 8b (685 mg, 3.45 mmol), THF (2 ml), MeOH (5 ml), and Amberlyst A-26 (OH⁻): 8a (371 mg, 94%), colourless crystals after FC (AcOEt) of the crude. M.p. 79° (crystal washed with Et₂O; [6] [24]: 74–78.5°). IR (KBr): 3260 (br.), 2890. ¹H-NMR: Table 1. Anal. calc. for $C_6H_{10}O_2$ (114.14): C 63.13, H 8.83; found: C 63.0, H 8.9.

Conduritol E Tetraacetate (12b) and allo-Inositol Hexaacetate (14b). As described for 5b, with cis-cyclohexa-3,5-diene-1,2-diol (11a; 685 mg, 6.10 mmol), acetone/H₂O 9:1 (14 ml), NMO (1.74 g, 12.7 mmol, 2.1 equiv.), cat. OsO₄ soln. (5 ml; 15 h at r.t.), and Ac₂O (5 ml)/pyridine (10 ml; 40° for 15 h). FC (AcOEt/cyclohexane 4:6) of the crude gave 14b (830 mg, 31%) and 12b (920 mg, 48%), both as colourless crystals.

12b: M.p. 156° (AcOEt/hexane; [7]: 153°). IR (KBr): 1745 (br.), 1370, 1245, 1215. ¹H-NMR (400 MHz, CDCl₃, 25°): 5.68 (H–C(1), H–C(4)); 5.44 (H–C(2), H–C(3)); 5.91 (H–C(5), H–C(6)); 2.08 (Ac); 2.02 (Ac); $|J(1,6) + J(4,5)| \approx 4$, $|J(1,2) + J(3,4)| \approx 3.5$, $J(2,3) \approx 10$, $J(5,6) \approx 10$. ¹H-NMR (400 MHz, CDCl₃, -30°): 5.68; 5.41; 5.92; 2.10; 2.04. ¹³C-NMR (100.6 MHz, CDCl₃, 25°): 170.2 (C=O); 169.9 (C=O); 128.2 (C(5), C(6)); 66.6 (C(2), C(3)); 66.1 (C(1), C(4)); 20.8 (Me); 20.6 (Me). Anal. calc. for C₁₄H₁₈O₈ (314.28): C 53.50, H 5.77; found: C 53.7, H 5.7.

14b: M.p. 141–143° (CH₂Cl₂/hexane; [25]: 144°). IR (KBr): 1745 (br.), 1435, 1370, 1225. ¹H-NMR: *Table 3*. ¹³C-NMR: *Table 3*. Anal. calc. for C₁₈H₂₄O₁₂ (432.37): C 50.00, H 5.60; found: C 49.8, H 5.5.

Conduritol E (12a). As described for 5a, with 12b (290 mg, 0.92 mmol), THF (2 ml), MeOH (5 ml), and *Amberlyst A-26* (OH⁻): 12a (126 mg, 94%). Colourless crystals. M.p. 183° (MeOH; [7]: 180°). IR (KBr): 3365 (br.), 1105, 1095. ¹H-NMR (400 MHz, CD₃OD, 25°): 4.23 (H–C(1), H–C(4)); 3.90 (H–C(2), H–C(3)); 5.75 (H–C(5), H–C(6)). ¹³C-NMR (100.6 MHz, CD₃OD): 130.8 (C(5), C(6)); 71.2 (C(2), C(3)); 67.7 (C(1), C(4)). Anal. calc. for C₆H₁₀O₄ (146.16): C 49.31, H 6.90; found: C 49.4, H 7.1.

allo-*Inositol* (14a). As described for 5a, with 14b (334 mg, 0.77 mmol): 14a (132 mg, 95%). Colourless crystals. M.p. 310° (dec.; [25]: 320° (dec.)). IR (KBr): 3480–3180, 2920, 1440, 1420, 1110. Anal. calc. for C₆H₁₂O₆ (180.16): C 40.00, H 6.71; found: C 39.9, H 6.8.

Conduritol E Tetraacetate (12b) *and Conduritol D Tetraacetate* (13b). As described for 5b, with 11a (218 mg, 1.94 mmol), acetone/H₂O 9:1 (4 ml), NMO (269 mg, 1.99 mmol, 1 equiv.), cat. OsO_4 (2 ml), Ac_2O (3 ml)/pyridine (6 ml; 5 h at 40°). FC (AcOEt/cyclohexane 4:6) of the crude residue gave 12b (343 mg, 56%; see above) and 13b (195 mg, 32%), both as colourless crystals. 13b: M.p. 107–108° (AcOEt/hexane; [7]: 102–104°). IR (KBr): 1745, 1730, 1365, 1230, 1215. ¹H-NMR (250 MHz, CDCl₃, 25°): 5.58 (*m*, H–C(1), H–C(4)); 5.37 (*m*, H–C(2), H–C(3)); 5.90 (*m*, H–C(5), H–C(6)); 2.01 (Ac).

Conduritol C Tetraacetate (16b), epi-Inositol Hexaacetate (18b), neo-Inositol Hexaacetate (19b), and chiro-Inositol Hexaacetate 20b. To a stirred soln. of diacetate 15b (303 mg, 1.54 mmol, 2.15 equiv.) in acetone/H₂O 9:1 (8 ml) were added NMO (446 mg, 3.29 mmol) and cat. OsO₄ soln. (1.5 ml). After 24 h at r.t., the soln. was evaporated, the residue taken up in Ac₂O (3.5 ml) and pyridine (7 ml), and the resulting soln. heated overnight to 45° . Et₃N (5 ml) was added and the soln. kept for 24 h at 45°. After addition of toluene and MeOH, the soln. was evaporated and the crude residue separated into several fractions by column chromatography. Each fraction was partly resolved by FC (AcOEt/cyclohexane 4:6) whereby 16b, 18b, 19b, and 20b could be isolated.

16b: M.p. 93° (AcOEt/cyclohexane; [7]: 92°). IR (KBr): 1740, 1360, 1225. ¹H-NMR (C₆D₆, 250 MHz, 25°): 5.48 (H–C(1)); 5.90 (H–C(2)); 5.33 (H–C(3)); 5.96 (H–C(4)); 5.58 (H–C(5)); 5.40 (H–C(6)); 1.68 (Ac); 1.66 (Ac); 1.63 (Ac): ¹³C-NMR (62.9 MHz, C₆D₆, 25°): 170.0 (CO); 169.6 (CO); 169.1 (CO); 128.4 (C(6)); 127.6 (C(5)); 71.2 (C(3)); 70.3 (C(2)); 69.9 (C(4)); 68.2 (C(1)); 20.5 (Me); 20.3 (Me); 20.3 (Me); 20.2 (Me).

18b: M.p. 183--184° (CH₂Cl₂/hexane; [9]: 186°). ¹H-NMR: Table 3. ¹³C-NMR: Table 3.

19b: M.p. 257–259° (MeOH; [9]: 250–252°). ¹H-NMR: *Table 3*. ¹³C-NMR: *Table 3*.

20b: M.p. 113-114° (Et₂O/hexane; [26]: 111-112°). ¹H-NMR: Table 3. ¹³C-NMR: Table 3.

Conduritol C Tetraacetate (16b) and Conduritol F Tetraacetate (17b). As described for 5b, with trans-cyclohexa-3,5-diene-1,2-diol (15a; 200 mg, 1.8 mmol), acetone/H₂O 9:1 (5 ml), NMO (241 mg, 1.8 mmol, 1 equiv.), cat. OsO₄ soln. (2 ml; 20 h at r.t.), Ac₂O (2.5 ml)/Et₃N (5 ml; 15 h at 40°). ¹H-NMR (250 MHz): 16b/17b (*ca.* 70%) 3:1, 18b/19b/20b (< 20%). Compound 17b could not be isolated in pure form, but its ¹H-NMR was identical with the one of a pure sample of 17b as synthetized by *Le Drian et al.* [18]. ¹H-NMR (non-purified 17b; 250 MHz, C₆D₆): 5.90 (*dd*, *J* = 11.0, 7.5, H–C(3)); 5.65 (*m*, H–C(1)); 5.55 (*ddd*, *J* = 7.5, 1.7, 1.2, H–C(4)); 5.39 (*m*, H–C(5), H–C(6)); 5.23 (*dd*, *J* = 11.0, 3.9, H–C(2)); 1.71, 1.69, 1.63, 1.56 (4s, AcO).

REFERENCES

- [1] F. Backenstrass, J. Streith, Th. Tschamber, Tetrahedron Lett. 1990, 31, 2139.
- [2] Ch. Y. Park, B. Moon Kim, K. B. Sharpless, Tetrahedron Lett. 1991, 32, 1003.
- [3] Th. Posternak, H. Friedli, Helv. Chim. Acta 1953, 36, 251.
- [4] N. D. Zelinski, Ya. I. Denisenko, M. S. Eventova, C. R. Acad. Sci. URSS 1935, 1, 313.
- [5] H.Z. Sable, K.A. Powel, H. Katchian, C. B. Niewoehner, S. B. Kadlec, Tetrahedron 1970, 26, 1509.
- [6] K.A. Powell, A.L. Hughes, H. Katchian, J.F. Jerauld, H.Z. Sable, Tetrahedron 1972, 28, 2019.
- [7] M. Nakajima, I. Tomida, S. Takei, Chem. Ber. 1957, 90, 246.
- [8] M. Nakajima, I. Tomida, S. Takei, Chem. Ber. 1959, 92, 163.
- [9] M. Nakajima, I. Tomida, N. Kurihara, S. Takei, Chem. Ber. 1959, 92, 173.
- [10] G.E. McCasland, S. Furuta, L.F. Johnson, J.N. Shoolery, J. Org. Chem. 1963, 28, 894.
- [11] S.J. Angyal, P.T. Gilham, J. Chem. Soc. 1958, 375.
- [12] K. L. Platt, F. Oesch, Synthesis 1977, 449.
- [13] H. Günther, G. Jikeli, Chem. Rev. 1977, 77, 599.
- [14] M. Barfield, R. J. Spear, S. Sternhell, Chem. Rev. 1976, 76, 593.
- [15] A. Defoin, H. Fritz, G. Geffroy, J. Streith, Helv. Chim. Acta 1988, 71, 1642.
- [16] R. J. Abraham, H. Gottschalck, H. Paulsen, W. A. Thomas, J. Chem. Soc. 1965, 6268.
- [17] C. Le Drian, E. Vieira, P. Vogel, Helv. Chim. Acta 1989, 72, 338.
- [18] C. Le Drian, J.-P. Vionnet, P. Vogel, Helv. Chim. Acta 1990, 73, 161.
- [19] LAOCOON-III program provided by Bruker-Spectrospin.
- [20] M. M. Campbell, M. F. Mahon, M. Sanisbury, P. A. Searle, Tetrahedron Lett. 1991, 32, 951.
- [21] K. Akashi, R. E. Palermo, K. B. Sharpless, J. Org. Chem. 1978, 43, 2063.
- [22] G.E. McCashland, Adv. Carbohydr. Chem. 1965, 20, 10.
- [23] E.O.N. Lippmann, Ber. Dtsch. Chem. Ges. 1901, 34, 1159.
- [24] G.R. Krow, R. Carmosin, A. Maucuso, Org. Prep. Proced. Lut. 1977, 9, 285 (CA: 1978, 88, 37305w).
- [25] S.J. Angyal, L. Andersen, Adv. Carbohydr. Chem. 1959, 14, 135.
- [26] H. G. Fletcher, Jr., G. R. Frindlay, J. Am. Chem. Soc. 1948, 70, 4050.

1060